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Using the density-matrix renormalization-group method we study the two-dimensional Ising model in an
infinite strip geometry with free-boundary conditions. The renormalization scheme enables us to consider
systems of width up to 300~lattice spacings! and study the influence of the bulk magnetic field on correlation
function structure for all temperatures. From our numerical results we have determined the crossover line for
the correlation length related to the coexistence of the excited states. A detailed scaling study of this line is
performed. Our numerical results support and further specify previous conclusions reached by Abraham, Parry,
and Upton based on the bubble model of correlations.

PACS number~s!: 05.50.1q, 68.35.Rh, 75.10.Hk
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Understanding the statistical mechanics of classical s
tems in confined geometries has been a challenge for se
years@1–3# with much interest concerning the behavior
fluids and simple magnets confined between parallel wa
Studies of such finite-size effects have not only been limi
to the vicinity of the critical point, but have also focused
the first-order phase transition for which much less inform
tion is known@4#. In this Brief Report we consider a squar
lattice two-dimensional Ising system in an infiniteL3` strip
geometry~with L the width of the strip! modeled by the
Hamiltonian

H52J(
^ i , j &

s is j2H(
i

s i , ~1!

where the coupling constantJ.0, H is the bulk magnetic
field, and s i561. The first sum runs over all neares
neighbor pairs while the second sum runs over all sites. F
boundary conditions are assumed, so that there are no
metry breaking surface fields.

Below the bulk critical point this model is predicted
show an interesting crossover behavior in correlation fu
tion structure at a certain valueHx(T;L) of the bulk field
@4,5#. Specifically the borderlineHx(T;L) separates quite
distinct finite-size behaviors of the correlation lengthj. Us-
ing the approximate bubble model@6# Abrahamet al.argued
@5# that at subcritical temperatures

1/j5P~T!LuHu, for 0,uHu<Hx , ~2!

1/j5R~T!1S~T!uHu2/3, for uHu>Hx , ~3!

whereP(T)52m/kBT, R(T)52s0 /kBT andS(T) is an un-
known positive coefficient. Here,m ands0 refer to the bulk
spontaneous magnetization and the interfacial tension,
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spectively. The bubble model studies concluded t
Hx(T;L) scales towards the first-order line according to t
form @5,7#

Hx~T;L !'A~T!La1B~T!Lg1C~T!Ld1•••, ~4!

wherea521, g525/3, andd527/3.
This behavior is similar to the nonanalytic corrections

the Kelvin equation for the finite-size scaling of the shift
bulk coexistence field in a strip geometry with symme
breaking surface fields which has been studied recently@8#.
Using the density-matrix renormalization-group~DMRG!
method@9,10# it was found that for a large range of surfac
fields and temperatures corrections are not compatible w
the behavior predicted by the existing theory@11#. This dis-
crepancy is one of the central motivations for our pres
study, since one may anticipate that the predicted nona
lytic correction terms forHx(T;L) are easier to observe be
cause there is no length scale induced by a surface field@8#.

Abraham et al. @5# argued that the correlation lengt
crossover occurs because the class of dominating config

FIG. 1. The dominating configurations in strip geometry:~a! 0
,uHu,Hx , ~b! uHu.Hx .
4378 ©2000 The American Physical Society
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tions determining the behavior of correlation functio
changes from a single connected loop foruHu.Hx to two
disconnected closed loopsuHu,Hx ~which is allowed for
both free- and periodic-boundary conditions!. In our case,
where the free boundaries are present, foruHu,Hx , the
dominating configurations correspond to excitations in wh
the whole strip has the opposite magnetizations@12#. For
uHu.Hx the most important configurations between t
spins contributing to the correlation function are again clo
loops ~domains! of opposite magnetizations~see Fig. 1!.

One way of analyzing this problem beyond the bub
model approximation is to use transfer-matrix~TM! methods
@13#. However, it is well known that to obtain satisfacto
finite-size scaling results, one should consider large eno
systems@14#. This may, in turn, complicate calculations o
even make them impossible. To overcome this problem
have applied the DMRG method for two-dimensional s
tems based on the TM approach. It is possible to develo
very efficient algorithm for the construction of the effectiv
transfer matrices for largeL and this method has been su
cessfully employed for a number of problems~for which no
exact solutions are available; e.g., for nonvanishing b
fields! @15–18#. Using this method we have been able
analyze the present system in the full range of tempera
and bulk magnetic field for strips of widths up toL5300.
For a comprehensive review of the background, achie
ments, and limitations of the DMRG method, see Ref.@19#.

We first calculated the free-energy levels

f i~H,T;L !52
kBT

L
ln@l i~H,T;L !#, ~5!

for i 50,1,2, . . . , where l i are the eigenvalues of the TM
arranged in order of decreasing magnitude. We note that
cause the inverse~longitudinal! correlation length can be de
fined as

1/j~L !5 log~l0 /l1!, ~6!

and the lowest free-energy level does not cross others, e
cially important are the values of the bulk magnetic fie
Hx(T;L), where the first- and second-excited states cr
each other. In such a case we can observe the crossov
the behavior of the correlation length.

Let us first analyze the structure of the TM low-lyin
levels as a function of the bulk magnetic fieldH at fixedT.
At very low temperature they should behave essentially
the same way as the ground-state energy. Therefore,
worthwhile considering the ground-state properties of
system. To begin we label the configuration of a row for t
strip asus1 ,s2 , . . . ,sL21 ,sL&, where the values ofs i are
denoted6 for simplicity. For zero magnetic fieldH the two
states with all spins positiveu11•••11& or negative
u22•••22& have the same energy. The extra magne
field term splits both states and the energy per spin is

e1,252JS 22
1

L D6H. ~7!

Assuming H.0 the u11•••11& state is always the
singlet ground state. In order to find the first-excited sta
we have to flip the first or the last column (i 51,L) in the
h
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previous configurations. In this way we get the four sta
u21•••11&, u11•••12&, u12•••22&, and
u22•••21&. The magnetic field splits this level into tw
doublets and for the two first states their energy decrea
when theH increases according to the equation

e3,452JS 22
3

L D2HS 12
2

L D . ~8!

Therefore, we expect the crossing of the singlet st
u22•••22& with the doublet u21•••11&,
u11•••12& at a value of the bulk magnetic field given b

Hx~T50;L !5
J

L21
. ~9!

Note that for T→0, Eq. ~4! reduces to Eq.~9! provided
A(T)→J andB(T),C(T)→0.

At finite temperatures we do not have any real cross
points but, instead, so-called ‘‘regions of avoided lev
crossing.’’ AtH50 the first two levels are separated acco
ing to f 12 f 0;exp(2s0L/kBT), so they are asymptotically
degenerate forL→`. The region of avoided level crossin
continues for nonzero magnetic fields up touHu
;exp(2s0L/kBT). In order to determine the behavior ofj,
we have to consider the second and third eigenvalues of
transfer matrix@4,5#, where asymptotic degeneracy is al
present forf 1 and f 2 @20#. It is assumed that the differenc
f 22 f 1 and the avoided level crossing region centered onHx
are of order exp(2CL), where the coefficientC may beH
andT dependent. Given this it is still sensible to discuss
algebraic shift of the valueHx(T;L) for L→`. In order to
find out the value ofHx in finite temperatures at fixedL, we
identify Hx with the value of the bulk magnetic field wher
the second free-energy levelf 1 has a maximum and the sep
ration f 22 f 1 is minimal. The curvesHx(T;L) represent the

FIG. 2. The lines of coexistence of the excited states for diff
ent strip widthL. Here Tc is the bulk critical point and the thick
solid line denotes the bulk first-order line phase boundary. T
arrows point at the inflection points whereHx(T;L) has a local
minimum as a function of the temperature.T8(L) describes the
point whereHx(T;L) ends on theH50 axis. The dashed lines ar
used as guides for the eye.
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coexistence of the excited states and are shown in Fig. 2
L→` the coexistence lines of the excited states shift towa
theH50 axis, which is intuitively clear atT50. To see this,
note that as the width of the strip increases the energy
configurations, in which only one column of spins is flippe
decreases and approaches the energy of configurations
all spins pointed in one direction. Thus in theL→` limit
one necessarily hasHx50.

We now turn to the scaling of the coexistence li
Hx(T;L) close to the bulk first-order line~Fig. 2!. To verify
the bubble model predictions@Eq. ~4!# we have tabulated the
values of Hx(T5const;L) for L520,40, . . . ,200 and for
temperatures ranging fromT'0.44Tc up to T'0.99Tc .

Table I shows the values of scaling exponents obtai
from the DMRG data. Using the powerful extrapolation tec
nique of Bulirsch and Stoer~BST! @21#, we have obtained
excellent agreement with the predictions of Abrahamet al.
@5#.

In order to get the coefficientA in Eq. ~4! one can com-
pare Eqs.~2! and ~3!. They have to agree at the valueH
5Hx in the thermodynamic limit, which implies the follow
ing relation@7#:

A~T!5s0~T!/m~T!. ~10!

FIG. 3. Coefficients appearing in the scaling of the coexiste
line Hx(L;T) close to the bulk first-order phase boundary. The so
line denotes the analytical result determined in the bubble mo
The symbols describe our numerical results. The dashed lines
guides for the eye.

TABLE I. Scaling exponents forHx(T;L)as extrapolated from
the DMRG data.

T a g11 d15/3

1.00 20.9994~5! 20.668~1! 20.66~4!

1.50 20.9990~5! 20.667~1! 20.64~1!

1.75 21.000~1! 20.668~2! 20.64~1!

2.00 20.998~1! 20.667~1! 20.67~1!

2.15 21.028~3! 20.67~1! 20.67~2!

2.20 21.002~6! 20.69~1! 20.68~3!
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In Fig. 3 our data match this curve very well. To the be
of our knowledge, the coefficientsB(T) andC(T) in Eq. ~4!
have not been yet determined, but our numerical results
predict their temperature behavior.

Close toTc the validity of Eq.~4! is limited because the
scaling of points on theHx curve is governed by the bulk
critical region. In order to study it in detail we have consi
ered characteristic points of the upper part of theHx curve:
the inflection points„Hc(L), Tc(L)… and the end points
T8(L) ~see Fig. 2!, where the following scaling is expected

tc~L !5@Tc2Tc~L !#/Tc;L2yT,

Hc~L !;L2yH. ~11!

Here,yT51 andyH515/8 are the thermal and magnetic e
ponents of the two-dimensional Ising model.

To verify the scaling to the critical point (H50,t50) we
determined the inflection points and the end points forL
530, 60, 100, 130, 160, and 200 using the BST techniq
We have examined the scaling form~11! for L→` and
found very good agreement. For example, we find

tc50.00006~6! and yT51.005~5!,

Hc520.0006~6! and yH51.876~8!,

t850.0000~3! and yT51.006~6!.

Note that for T→Tc and L→` we can reproduce the
scaling form~11! from Eq. ~4! by assuming thatA(T)→0,
B(T)→0, andC(T)→`. This is in agreement with our nu
merical estimations for scaling coefficients as depicted
Fig. 3. Of course, this relation is not valid atTc .

In order to analyze the behavior of the correlation leng
we have determined 1/j for L between 100 and 300 for tem
peratures belowTc(L). To examine the form of Eq.~2! first
we have confirmed the linear dependence of the coeffic
on L. Next we compared our numerical results with the c
efficientsP(T) and R(T) in Eqs. ~2! and ~3!. Furthermore,

e

l.
re

FIG. 4. The coefficients of the correlation length in Eqs.~2! and
~3!. Solid lines denote the bubble model results:P(T)52m/kBT
and R(T)52s0 /kBT. The symbols describe the correspondi
DMRG results.
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we can also calculate the temperature dependence o
S(T) coefficient which was not determined in the bubb
model ~see Fig. 4!.

As the temperature increases, more and more com
configurations on the Ising strip contribute to the free ene
in contrast to the assumption of the bubble model@5#. Con-
sequently, for high temperatures the validity of Eqs.~2! and
~3! is limited to a very narrow range of magnetic fields. T
bubble model predictions are also invalid for very stro
bulk magnetic fields. This is why, for higher temperatures
smaller value ofH is necessary to recover the linear depe
dence of 1/j on H, as in Eq. ~2!. Similarly, when T
→Tc(L) the regime with theH2/3 dependence of 1/j @Eq.
~3!#, close to the right side of the coexistence line, shrinks
zero.

In conclusion, we have used the density-mat
renormalization-group method to obtain reliable informati
about the two-dimensional Ising model in nonzero bulk m
netic field. We have confirmed the crossover behavior p
dicted for the correlation length on the basis of the bub
model @5#. In contrast to the bubble model, however, o
study has not been limited to subcritical temperatures
s
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small bulk fields. We have confirmed the predictions
Abrahamet al. @5# for the scaling of the first-order line in th
subcritical region. Moreover, we have established the pre
scaling form for the bulk magnetic field by numerically d
termining the coefficientsB(T) and C(T) in Eq. ~4!. Fur-
thermore, we have extended the analysis of the bubble m
to the critical region, verifying that the scaling behavior i
governed by the bulk critical point. Finally, we have nume
cally confirmed the magnetic field dependence of the co
lation length, simultaneously extracting the temperature
pendence of the previously unknown coefficientS(T)
appearing in Eq.~3!. The above results again demonstra
that for two-dimensional classical systems the DMRG te
nique provides a highly reliable accurate method for stu
ing the equilibrium properties of large systems in anonvan-
ishing bulk magnetic field.
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and E. Carlon,ibid. 59, 3783~1999!.

@18# E. Carlon, M. Henkel, and U. Schollwo¨ck, Eur. Phys. J. B12,
99 ~1999!; E. Carlon, F. Iglo´i, W. Selke, and F. Szalma, J. Sta
Phys.96, 531 ~1999!.

@19# Lecture Notes in Physics, edited by I. Peschel, X. Wang, M
Kaulke, and K. Hallberg~Springer, Berlin, 1999!, Vol. 528; K.
Hallberg, inCRM Proceedings~Springer, Montreal, in press!.

@20# C. M. Newman and L. S. Schulman, J. Math. Phys.18, 23
~1977!.

@21# R. Bulirsch and J. Stoer, Numer. Math.6, 413 ~1964!; M.
Henkel and G. Schu¨tz, J. Phys. A21, 2617~1988!.


