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Using the density-matrix renormalization-group method we study the two-dimensional Ising model in an
infinite strip geometry with free-boundary conditions. The renormalization scheme enables us to consider
systems of width up to 30(Qattice spacingsand study the influence of the bulk magnetic field on correlation
function structure for all temperatures. From our numerical results we have determined the crossover line for
the correlation length related to the coexistence of the excited states. A detailed scaling study of this line is
performed. Our numerical results support and further specify previous conclusions reached by Abraham, Parry,
and Upton based on the bubble model of correlations.

PACS numbegps): 05.50+q, 68.35.Rh, 75.10.Hk

Understanding the statistical mechanics of classical sysspectively. The bubble model studies concluded that
tems in confined geometries has been a challenge for sevendl(T;L) scales towards the first-order line according to the
years[1-3] with much interest concerning the behavior of form [5,7]
fluids and simple magnets confined between parallel walls.

Studies of such finite-size effects have not only been limited Hy(T;L)=A(T)L“+B(T)L"+C(T)L°+---,  (4)
to the vicinity of the critical point, but have also focused on
the first-order phase transition for which much less informaV1€r€a=—1, y==>5/3, andé=—7I3. . .
This behavior is similar to the nonanalytic corrections to

tion is known[4]. In this Brief Report we consider a square- the Kelvin equation for the finite-size scaling of the shifted

lattice two-dimensional Ising system in an infinitex oo strip ) ) . . :
geometry (with L the width of the strip modeled by the bulk coexistence T'eld In a strip geometry V.V'th symmetry
Hamiltonian breaking surface fields which has been studied recégily
Using the density-matrix renormalization-groy@MRG)
method[9,10] it was found that for a large range of surface
H=-12, o aj—HE oi, (1) fields and temperatures corrections are not compatible with
o i the behavior predicted by the existing thediyl]. This dis-
. ) _crepancy is one of the central motivations for our present
where the coupling constadt>0, H is the bulk magnetic  gy,gy since one may anticipate that the predicted nonana-
field, and gj==1. The first sum runs over all nearest- |y ic correction terms foH(T;L) are easier to observe be-

neighbor pairs while the second sum runs over all sites. Fregy ;se there is no length scale induced by a surface[Bld
boundary conditions are assumed, so that there are no sym- gpranam et al. [5] argued that the correlation length

metry breaking surface fields. _ _ crossover occurs because the class of dominating configura-
Below the bulk critical point this model is predicted to

show an interesting crossover behavior in correlation func-
tion structure at a certain valug,(T;L) of the bulk field
[4,5]. Specifically the borderlined,(T;L) separates quite +m -m +m
distinct finite-size behaviors of the correlation lengthUs-
ing the approximate bubble mod&l] Abrahamet al. argued
[5] that at subcritical temperatures

a)

1e=P(T)L|H|, for 0<|H|<H,, @) b)

r~ —» “«— T —>

+m +m
1e=R(T)+S(T)|H|?3, for |H|=H,, ©)

whereP(T)=2m/kgT, R(T)=204/kgT andS(T) is an un- l
known positive coefficient. Heren and o refer to the bulk FIG. 1. The dominating configurations in strip geomet@a): 0
spontaneous magnetization and the interfacial tension, re<|H|<H,, (b) |H|>H,.
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tions determining the behavior of correlation functions 24
changes from a single connected loop fei{>H, to two ML)
disconnected closed loogsl|<H, (which is allowed for g

both free- and periodic-boundary conditipngn our case, T, /G,O/
HOL.IL) &
\\
:§

[o)

where the free boundaries are present, [idf<H,, the
dominating configurations correspond to excitations in which 22
the whole strip has the opposite magnetizatiphd]. For

|H|>H, the most important configurations between the &

spins contributing to the correlation function are again closed¢" “u o-——0 L=60
loops (domaing of opposite magnetizationsee Fig. 1 AN N o--—a L=100

One way of analyzing this problem beyond the bubble 9 \ \q\ >--oL=130
model approximation is to use transfer-maifm\) methods NN N, &aL=160
[13]. However, it is well known that to obtain satisfactory \\\ AN g+ L=200
finite-size scaling results, one should consider large enougt \ \\ \\
systemd 14]. This may, in turn, complicate calculations or NN N LN
even make them impossible. To overcome this problem we  0.000 0.002 0004 0.006
have applied the DMRG method for two-dimensional sys- H/J

tems based on the TM approach. It is possible to develop a
very efficient algorithm for the construction of the effective
transfer matrices for large and this method has been suc-
cessfully employed for a number of problerfisr which no

FIG. 2. The lines of coexistence of the excited states for differ-
ent strip widthL. Here T, is the bulk critical point and the thick
solid line denotes the bulk first-order line phase boundary. The

exact solutions are available; e.g., for nonvanishing buli@ows point at the inflection points wheté,(T;L) has a local
bLoe minimum as a function of the temperaturg’(L) describes the

fields) [15-1§. Using this mgthod we have been able to oint whereH,(T;L) ends on théd=0 axis. The dashed lines are
analyze the present system in the full range of temperatur%

d ides for th .
and bulk magnetic field for strips of widths up to=300. sed as guides for the eye

For a comprehensive review of the background, achievepeyious configurations. In this way we get the four states
ments, and limitations of the DMRG method, see R&€]. =+ 4++), |++---4-), [+—---—=), and

We first calculated the free-energy levels |- —---—+). The magnetic field splits this level into two
doublets and for the two first states their energy decreases

kgT
fi(H,T;L)=— %In[)\i(H,T;L)], (59  when theH increases according to the equation
. ) 3 2
for i=0,1,2 ..., where\; are the eigenvalues of the TM €34=—J| 2— E) —H( 1- E)' (©)]

arranged in order of decreasing magnitude. We note that be-

cause the inversgongitudina) correlation length can be de- Therefore, we expect the crossing of the singlet state

fined as |- —— ) with the doublet |—+---++),

VE(L)=log(Ag/\y), 6) |++---+—) at a value of the bulk magnetic field given by
and the lowest free-energy level does not cross others, espe- H (T=0:L)= J (9)
cially important are the values of the bulk magnetic field X ' L-1°

H.(T;L), where the first- and second-excited states cross ]
each other. In such a case we can observe the crossover lfpte that forT—0, Eq. (4) reduces to Eq(9) provided
the behavior of the correlation length. A(T)—J andB(T),C(T)—0. _
Let us first analyze the structure of the TM low-lying At finite temperatures we do not have any real crossing
levels as a function of the bulk magnetic fiettlat fixed T. ~ Points but, instead, so-called “regions of avoided level
At very low temperature they should behave essentially irfr0ssing.” AtH=0 the first two levels are separated accord-
the same way as the ground-state energy. Therefore, it 189 t0 f1—fo~exp(~ool/kgT), so they are asymptotically
worthwhile considering the ground-state properties of thedegenerate fot—o. The region of avoided level crossing
system. To begin we label the configuration of a row for thecontinues  for nonzero magnetic fields up tH|
strip as|oy,0, .. .,00_1,01), where the values of; are  ~eXp(~ool/kgT). In order to determine the behavior &f
denoted+ for simplicity. For zero magnetic fielti the two ~ We have to consider the second and third eigenvalues of the
states with all spins positivé++---++) or negative transfer matrix[4,5], where 'asymptotic degeneragy is also
|- = —— ) have the same energy. The extra magnetidresent forf, andf, [20]. It is assumed that the difference
field term splits both states and the energy per spin is f,—f, and the avoided level crossing region centereddgn
are of order exp{CL), where the coefficien€ may beH
andT dependent. Given this it is still sensible to discuss the
*H. () algebraic shift of the valuél,(T;L) for L—oe. In order to
find out the value oH, in finite temperatures at fixeld, we
AssumingH>0 the |+ +---++) state is always the identify H, with the value of the bulk magnetic field where
singlet ground state. In order to find the first-excited stateshe second free-energy levigl has a maximum and the sepa-
we have to flip the first or the last column={1,L) in the rationf,—f; is minimal. The curve$l,(T;L) represent the

1
er=-32-T
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TABLE |. Scaling exponents foH,(T;L)as extrapolated from 2.0

the DMRG data.
T a ’y+ 1 6+5/3 15+

1.00 —0.99945) —0.6681) —0.664) a

1.50 —0.9990@5) —0.6611) —0.641) g

1.75 —1.0002) —0.6682) —0.641) g 10

2.00 —0.9941) —0.6611) —0.671) S

2.15 —1.0283) -0.671) —-0.672)

2.20 —1.0026) -0.691) —0.683) 031
coexistence of the excited states and are shown in Fig. 2. As 00 ] ! 25
L— < the coexistence lines of the excited states shift towards kT/J )

theH =0 axis, which is intuitively clear af=0. To see this,
note that as the width of the strip increases the energy of FIG. 4. The coefficients of the correlation length in E@.and
configurations, in which only one column of spins is flipped, (3)- Solid lines denote the bubble model resufT)=2m/kgT
decreases and approaches the energy of configurations widd R(T)=200/kgT. The symbols describe the corresponding
all spins pointed in one direction. Thus in thes limit ~ DMRG results.
one necessarily has,=0. ) _
We now turn to the scaling of the coexistence line In Fig. 3 our data match .th|s curve very Well: To the best
H(T:L) close to the bulk first-order lin€Fig. 2). To verify ~ Of our knowledge, the coefficienB(T) andC(T) in Eq. (4)
the bubble model prediction&q. (4)] we have tabulated the have_ not bgen yet determined, put our numerical results can
values of H(T=constL) for L=20,4Q...,200 and for Predict their temperature behavior. =
temperatures ranging froffi~0.44T, up to T~0.99T,. C'Iose toTC. the validity of Eq.(4) is limited because the
Table | shows the values of scaling exponents obtaineéc_ahng of points on the, curve is gove_rned by the bulk
from the DMRG data. Using the powerful extrapolation tech-critical region. _In .orde.r to study it in detail we have consid-
nique of Bulirsch and StoefBST) [21], we have obtained ered_ chara_lcterlstl_c points of the upper part of Ifluecurv_e:
excellent agreement with the predictions of Abrahanal.  the inflection points(H(L), Tc(L)) and the end points

[5]. T'(L) (see Fig. 2 where the following scaling is expected:
In order to get the coefficierk in Eq. (4) one can com- B
pare Egs.(2) and (3). They have to agree at the valile Te(L)=[Te=Te(L) )/ Te~L7T,
=H, in the thermodynamic limit, which implies the follow-
ing relation[77: Ho(L)~L YH, (11
Here,yt=1 andy,=15/8 are the thermal and magnetic ex-
A(T)=0oo(T)/m(T). (100 ponents of the two-dimensional Ising model.
To verify the scaling to the critical poin{=0,7=0) we
1.50 , \ - - - determined the inflection points and the end points lfor
\\ . =30, 60, 100, 130, 160, and 200 using the BST technique.
125\ . - \ﬂ\\q | We have examined the scaling for1l) for L—c and
\\/n/’ Y found very good agreement. For example, we find
g 1.00 ¢ 7.=0.000066) and y;=1.0055),
=
L
g 075 | H.=—0.00066) and y,=1.8768),
[
Q
(]

0.50 | 7'=0.000@3) and y;=1.0066).
Note that forT—T. and L—« we can reproduce the
scaling form(11) from Eq. (4) by assuming thafA(T)—0,
B(T)—0, andC(T)—. This is in agreement with our nu-
0.00 : ‘ : : % ' imati i ici i i
) 00 125 150 175 .00 5% 250 mencal estimations .for scgllng coefﬂm_ents as depicted in
KT/ Fig. 3. Of course, this relation is not valid @t .
B In order to analyze the behavior of the correlation length
FIG. 3. Coefficients appearing in the scaling of the coexistencaVe have determined 4 for L between 100 and 300 for tem-
line H,(L;T) close to the bulk first-order phase boundary. The solidPeratures below¢(L). To examine the form of Eq2) first
line denotes the analytical result determined in the bubble modelve have confirmed the linear dependence of the coefficient
The symbols describe our numerical results. The dashed lines af@ L. Next we compared our numerical results with the co-
guides for the eye. efficientsP(T) andR(T) in Egs.(2) and(3). Furthermore,
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we can also calculate the temperature dependence of tlsall bulk fields. We have confirmed the predictions of
S(T) coefficient which was not determined in the bubble Abrahamet al.[5] for the scaling of the first-order line in the
model(see Fig. 4. subcritical region. Moreover, we have established the precise
As the temperature increases, more and more complegcaling form for the bulk magnetic field by numerically de-
configurations on the Ising strip contribute to the free energytermining the coefficient®(T) and C(T) in Eq. (4). Fur-
in contrast to the assumption of the bubble mddél Con-  thermore, we have extended the analysis of the bubble model
sequently, for high temperatures the validity of E@9.and {9 the critical region verifying that the scaling behavior is
(3) is limited to a very narrow range of magnetic fields. The gqyemed by the bulk critical point. Finally, we have numeri-
bubble model predictions are also invalid for very strongca|ly confirmed the magnetic field dependence of the corre-
bulk magnetic fields. This is why, for higher temperatures, a4tjon length, simultaneously extracting the temperature de-
smaller value oH is necessary to recover the linear depe”‘pendence of the previously unknown coefficieS(T)
dence of 1f on H, as in Eg/.S(Z). Similarly, when T ah5earing in Eq(3). The above results again demonstrate
—Te(L) the regime with theH* dependence of &/[Ed.  that for two-dimensional classical systems the DMRG tech-
(3)], close to the right side of the coexistence line, shrinks toyique provides a highly reliable accurate method for study-

Zero. _ _ _ ing the equilibrium properties of large systems in@nvan-
In conclusion, we have used the density-matriXjshingpulk magnetic field.

renormalization-group method to obtain reliable information

about the two-dimensional Ising model in nonzero bulk mag- | thank A.O. Parry for suggesting the topic of this Brief
netic field. We have confirmed the crossover behavior preReport to me. | am grateful to E. Carlon, T.K. Kopend
dicted for the correlation length on the basis of the bubbleA.O. Parry for a critical reading of the manuscript. This work
model [5]. In contrast to the bubble model, however, ourwas supported by the Polish Science Committ€BN) un-
study has not been limited to subcritical temperatures ander Grant No. 2P03B10616.
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